
Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces

Fatih Porikli
Mitsubishi Electric Research Laboratories

fatih@merl.com

Abstract

We present a novel method, which we refer as an integral
histogram, to compute the histograms of all possible target
regions in a Cartesian data space. Our method has three
distinct advantages: 1- It is computationally superior to
the conventional approach. The integral histogram method
makes it possible to employ even an exhaustive search pro-
cess in real-time, which was impractical before. 2- It can
be extended to higher data dimensions, uniform and non-
uniform bin formations, and multiple target scales with-
out sacrificing its computational advantages. 3- It enables
the description of higher level histogram features. We ex-
ploit the spatial arrangement of data points, and recursively
propagate an aggregated histogram by starting from the ori-
gin and traversing through the remaining points along ei-
ther a scan-line or a wave-front. At each step, we update a
single bin using the values of integral histogram at the pre-
viously visited neighboring data points. After the integral
histogram is propagated, histogram of any target region can
be computed easily by using simple arithmetic operations.

1. Introduction

A histogram is an array of numbers in which each ele-
ment, bin, corresponds to the frequency of a range of values
in the given data. For instance, each bin counts the number
of pixels having the same color values in case of an image
histogram. Thus, a histogram is a mapping from the set of
data values to the set of non-negative real numbers. From
a probabilistic point of view, the normalization of an his-
togram results in a function that is most akin to the proba-
bility density function of the data. It is possible to employ a
histogram to answer the following questions: What kind of
distribution do the data come from? What are the statistical
properties of this distribution such as how spread out are the
data? Are there outliers in the data? Histograms are among
the most common features used in many computer vision
tasks from object based retrieval [1], [2], to segmentation
[3], [5] to detection [4], [6] to tracking [7].

Computational complexity is one major bottleneck of the
histogram extraction and comparison based search tasks. It
is obvious that only an exhaustive search can provide the
global optimum. Although several sub-optimal techniques
that are powered by gradient descent methods and applica-
tion specific constraints have been developed to deliver ac-
celerated alternatives to the basic exhaustive search, com-
puter vision problems that rely on the optimal solutions,
such as detection and tracking, still demand a theoretical
breakthrough in histogram extraction as much as an power-
ful computers to crunch the numbers.

To address the computational requirements of detection
tasks, we develop a fast method to compute histograms of
all possible target regions in a given data. We take advan-
tage of the spatial positioning of data points in a Cartesian
coordinate system, and propagate an aggregated function,
which we refer as the integral histogram, starting from an
origin point and traversing through the remaining points
along a scan-line. We iterate the integral histogram at the
current point using the histograms of the previously pro-
cessed neighboring data points. At each step, we increase
the value of the bin that the current point fits into the bin’s
range. After the integral histogram is obtained for each data
point, histograms of target regions can be computed easily
by using the integral histogram values at the corner points
of those regions without reconstructing a separate histogram
for every single region. In a 2D data, such as an image, the
integral histogram converts into the extraction of rectangu-
lar region histograms, which are computed by intersection
of the integral histogram at the four corner points.

The integral histogram method has several advantages:
First, it is computationally superior than the conventional
approach. It is possible to execute even an exhaustive his-
togram search process in the data space, which was infea-
sible with conventional approaches. It can be extended to
higher dimensions, histogram bin structures, and multiple
scales without sacrificing its computational benefits. It en-
ables description of advanced histogram features as illus-
trated in Fig. 1.

In the next section, we summarize the previous work. In
section 3, we introduce the integral histogram formulation

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Figure 1. Advanced features, e.g. spatial arrangement or hierarchi-
cal fusion of the component histograms, can be easily computed
using integral histogram for various tasks.

in detail. In section 4, we give a computational complexity
analysis by considering different scenarios. In section 5, we
present simulation results and discuss various aspects of the
proposed method.

2. Previous Work

It is possible to calculate the sum of the values within
rectangular regions in linear time without repeating the
summation operator for each possible region [6]. A constant
number of operation for each rectangular sum is needed to
compute such sums over distinct rectangles many times. A
cumulative image function is defined such that each element
of this function holds the sum of all values to the left and
above of the pixel including the value of the pixel itself.
The cumulative image can be computed for all pixels with
four arithmetic operations per pixel. Starting from the top
left corner and traversing first to the right and then to the
down, the value of the cumulative image at the current pixel
equal is obtained by the addition of the left and the up pixel
and subtraction of the upper left pixel’s cumulative values.
After the cumulative image is computed, the sum of image
function in a rectangle can be computed with another four
arithmetic operations with appropriate modifications at the
border. Thus with a linear amount of computation, the sum
of image function over any rectangle can be computed in
linear time.

A conventional approach of measuring distances be-
tween a given histogram and histograms of all possible tar-
get regions is an exhaustive search. This process requires
generation of histograms for the regions centered at every
possible points. In case the search should be done at dif-
ferent scales, i.e. different target region sizes, the whole
process should be repeated as many times as the number
of scales. We give a pseudo-code of the conventional his-
togram in algorithm 2.1. To our knowledge, the conven-
tional approach is the only solution (other than the pre-
sented integral histogram method) that guarantees to find
the global optimum in histogram based search.

Algorithm 2.1: CONVENTIONAL(N, M, S, B)

for each possible scale ∈ S

do

for each possible point ∈ N

do

for each target point ∈ M

do

Get current value
F ind corresponding bin
Get bin value
Increase bin value

for each bin ∈ B
do

{
Normalize

Compute histogram distance

3. Integral Histogram Formulation

Integral histogram is a recursive propagation method
works in Cartesian spaces and it can be extended into any
dimensional data space and any tensor representations. It is
a superset of the cumulative image formulation mentioned
in the previous section. To perform histogram comparison,
we first generate an integral histogram by propagation, and
then compute the histograms of target regions by intersec-
tion.

Suppose our function f is a defined in a d-dimensional
real valued Cartesian space Rd such as x → f(x) where
x = [x1, .., xd] is a point in this space. This function maps
to a k-dimensional tensor, i.e. f([x1, .., xd]) = [y1, .., yk].
Let assume the d-dimensional data space to be bounded
within the range N1, ..., Nd, i.e. 0 ≤ xi ≤ Ni.

3.1. Propagation

We define an integral histogram H(xp, b) at a data point
at the pth order along a sequence of points x0,x1, ..,xp

such as

H(xp, b) =
p⋃

j=0

Q(f(xj)) (1)

where Q(.) is the corresponding bin of the current point,
and ∪ is the union operator that is defined as follows: the
value of the bin b of H(xp, b) is equal to the sum of the
previously visited points’s histogram bin values, that is the
sum of all Q(f(xj)) while j < p. In other words, H(xp, b)
is the histogram of the region between the origin and current
point; 0 ≤ xj

1 ≤ xp
1, 0 ≤ xj

2 ≤ xp
2, ..., etc. Note that,

H(xN , b) is equal to the histogram of all data points since
xN = [N1, .., Nd] is the last point in the space. Therefore,
the integral histogram can be written recursively as

H(xj , b) = H(xj−1, b) ∪ Q(f(xj)) (2)

using the initial condition H(0, b) = 0, which means all the
bins are empty at the origin.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Figure 2. Propagation of integral histogram by string scan.

Figure 3. Propagation of integral histogram by wavefront scan.
Yellow indicates already traversed points. At each step, the cur-
rent integral histogram is obtained from the integral histogram val-
ues of the three neighbors, and the bin that corresponds to current
point’s value is increased by one.

The are different scanning and propagation approaches;
here we present two of them. One is a string scan method
that covers the data space along each dimension e.g. from
left to right and top to bottom for an image data. The inte-
gral histogram at the current point is obtained by copying
the previous values and increasing the corresponding bin
with respect to the current value of the point. The string
scan requires only update at each step of propagation. How-
ever, d string scans at different dimensions should be per-
formed to obtain the histogram of a polytope region in a
d-dimensional data as illustrated in Fig. 2.

It is also possible to scan points using an active sets of
points, i.e. a wavefront. The wavefront scan requires up-
dating the integral histogram for such data points that their
left, upper, and upper-left neighbors are already scanned in
case of an image data. The integral histogram at a point is
obtained by three arithmetic operations for each bin of us-
ing the integral histogram values of the three neighbors as
shown in Fig. 3. The integral histogram values of the previ-
ous point is copied to the current point before the propaga-
tion. Either the updated bin is copied to all of the remaining
points’ bins (a total of 0.5(N2−N) copy operations), or all
the previous bins are copied to the current bins (BN oper-
ations), which can be done by fast hardware-level memory
copy functions or by pointer tables.

3.2. Intersection

The histogram of a target region T can be computed us-
ing the wavefront propagated integral histogram values at
the boundary points of the region. In a Cartesian space, the
target region corresponds to a polytope enclosed by a finite
number of hyperplanes such as x−

1 ≤ x1 ≤ x+
1 , x−

2 ≤ x2 ≤
x+

2 , .., x−
d ≤ xd ≤ x+

d . The boundary points are xr
l where

their indices in each dimension have r number of x− co-
ordinates and d−r number of x+ coordinates. Note that,
for a fixed r there exist Cd

r such combinations, which is a
binomial coefficient. In other words, for r = 0 there is only
one point [x+

1 , x+
2 , .., x+

d]. For r = 1 there are d points
[x−

1 , x+
2 , .., x+

d], [x+
1 , x−

2 , .., x+
d],..,[x+

1 , x+
2 , .., x−

d], and so
on. Then, the histogram is simply obtained as

h(T, b) =
d∑

r=0

(−1)r

Cd
r∑

l=1

H(xr
l , b). (3)

This assigns the histogram bins of the current point by using
the intersection of the bins of the three previous histograms.

In case of an N1 × N2 gray level image, our parameters
are d = 2, k = 1, and a wavefront scan from upper left
point the propagation can be written as

H(x1, x2, b) = H(x1−1, x2, b) + H(x1, x2−1, b) (4)

−H(x1−1, x2−1, b) + Q(f(x1, x2)).

and the intersection becomes h(T, b) = H(p+
1 , p+

2 , b) −
H(p−1 , p+

2 , b) − H(p+
1 , p−2 , b) + H(p−1 , p−2 , b).

As opposed to the conventional histogram computation,
the integral histogram method does not repeat the histogram
extraction for each possible region as given in the pseudo-
code below:

Algorithm 3.1: INTEGRAL HISTOGRAM(N, S, B)

for each possible point ∈ N

do

for each bin ∈ B
do

{
Propagate integral histogram

Get current value
F ind bin
Get bin value
Increase bin value

for each possible scale ∈ S

do

for each possible point ∈ N

do

for each bin ∈ B

do
{

Compute intersection
Normalize

Compute histogram distance

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

A B C D E
Integer addition 1 1 1 1 1
Integer multiply 4 4 1.2 24 4
Integer divide 6 36 4.4 - 75
Floating-point addition 20 3 1 4.2 4
Floating-point multiply 20 5 1.2 113 4
Floating-point divide 20 38 1.2 - 100
Type conversion 20 - - - 105
Bit-wise shift 1 - - - 2

Table 1. Column-A is the relative cost of the basic processor op-
erators as given in [8]. Column-B is the cost of the operators ex-
ecuted on a P4 processor that uses streaming SIMD and Prescott
arithmetic operations [10]. Column-C is the corresponding costs
on a P3 MMX processor [11]. Column-D is the relative costs on
a P4 working running C++ compiler [9]. We also did our own
experiments to determine the relative costs (column-E).

4. Complexity Analysis

We performed a computational complexity analysis in
terms of the relative cost of processor operations, which is
usually measured against the cost of an integer addition op-
eration. Relative costs of several operations reported in the
literature as well as our own observations are presented in
the Table 1.

Since the cost of the array indexing becomes comparable
especially for the higher dimensional data, we also make
an assessment of the indexing operators. In [8], it is ex-
plained that an ordinary indexing for an d-dimensional array
requires d additions, d−1 multiplications, and d logical oper-
ators, which has a total relative cost of d+4(d−1)+1 = 6d−4.
By using a look-up table of pointers, the multiplications can
be replaced by d−1 pointer referencing. However, we found
that the cost of an d-dimensional array indexing is approxi-
mately 4d+3(d−1) = 7d−3 in our experiments.

We assume the input data is a d-dimensional array with
k-dimensional tensors. The histograms are k-dimensional
with B identical size bins assigned for each dimension, and
the bin size is also an integer number. The target region size
is M1 × .. × Md. Most problems also require extraction
of histograms at different scales Ss where s = 1, .., d. The
type of the input data, i.e. whether it is integer or floating
point, changes the computational load. The below analysis
can be extended to fixed point operations as well.

4.1. Integer Data

Suppose the input data has integer valued tensors. The
conventional histogram matching algorithm requires these
main tasks before comparing histograms:

• Get current values: 1 d-dimensional array indexing
and k additions,

• Find bin: k integer divisions (or floating point multi-
plication and float-to-integer conversion),

• Get bin value: k-dimensional array indexing,

• Increase bin value: 1 integer addition,

• Normalize: Bk floating point multiplication.

Note that, for different region sizes, the above computation
should be repeated. In terms of the relative cost, the conven-
tional algorithm requires 7d−3+k operations for getting the
current values in the d-dimensional input tensor, 75k opera-
tions to compute the corresponding bin indices, 1 operation
(for 1 addition) to increase the bin value. Computing bin in-
dices can be done by a floating-point multiplication and then
float-to-integer conversion, however the cost of this option
(109k) is higher than the division itself (75k). After all the
M1 × .. × Md points in the target region are processed, the
histogram bins are normalized with the number of points,
which requires Bk floating point multiplications, thus 4Bk

operations in terms of the relative cost. Note that the previ-
ous computations are repeated for each of the N1 × ..×Nd

histograms matches. Then, the total number of operations
needed for all candidates becomes

(7d + 76k − 2)
d∏
j

Mj + 4Bk

 d∏

i

Ni

d∏
s

Ss (5)

On the other hand, the integral histogram method needs

• Propagate integral: 3 k-dimensional array indexing
and 2k integer additions,

• Get current values: 1 d-dimensional array indexing
and k additions,

• Find bin: k integer divisions (or floating point multi-
plication and float-to-integer conversion),

• Get bin value: k-dimensional array indexing,

• Increase bin value: 1 integer addition,

• Compute intersection: 4 k-dimensional array indexing
and 3k integer additions,

• Normalize: Bk floating point multiplications.

Thus, the propagation takes 3(7k − 3) + 2k = 23k − 9
operations in addition to the cost of getting the current value
of the tensor values (7d − 3 + k), finding the indices of the
corresponding bin (75k), and accumulating the obtained bin
value (1), which is repeated for all points in the data space.
Then, we find that (7d + 99k − 11)

∏d
i Ni operations are

required to construct the integral histogram. We compute
the histogram intersection using 4(7k−3)+3k = 31k−12

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

operations, and normalize the result using Bk floating point
divisions (4Bk operations) for each histogram. Then, the
cost of extraction of all histograms at all possible scales is[

7d + 99k − 11 + (31k − 12 + 4Bk)
d∏
s

Ss

]
d∏
i

Ni (6)

Of course, both methods compute histogram distances using
the given metric in addition to the above costs.

We define a ratio of the computational load of the con-
ventional approach versus the integral histogram method;

r =
[(7d + 76k − 2)

∏d
j Mj + 4Bk]

∏d
s Ss

7d + 99k − 11 + (31k − 12 + 4Bk)
∏d

s Ss

(7)

4.2. Floating Point Data

Use of floating point data increases the cost of the divi-
sions in the computation of the bin indices. The cost in-
creases from 75k for each point to 100k. The bin value
increment cost becomes 4, which was 1 before. The total
cost for the conventional approach becomes

(7d + 101k + 1)
d∏
j

Mj + 4Bk

 d∏

i

Ni

d∏
s

Ss (8)

For the integral histogram method, the complexity of
the step for finding bin indices increases to 100k. In the
propagation stage, the cost of additions rises from 2k to
8k. In the intersection computation, the cost becomes
4(7k − 3) + 12k = 40k − 12. The total cost becomes[

7d + 130k − 11(40k − 12 + 4Bk)
d∏
s

Ss

]
d∏
i

Ni (9)

4.3. Power-of-2 Bin Sizes

Note that further optimizations on the both methods is
possible by using a bin size that is a power of 2. Using
bit-wise shift operator, a division operator can be achieved
with a fraction of the cost. For instance, instead of divid-
ing by 64, we can shift the number 6 bits to the right. The
computation of the bin indices drops from 75k to 2k (on av-
erage) depending on the amount of the shift. Then the total
number of operations for integer data using the conventional
approach becomes

(7d + 3k − 2)
d∏
j

Mj + 4Bk

 d∏

i

Ni

d∏
s

Ss (10)

The integral histogram also gains using the bin sizes that
are values of 2. The total cost drops to[

31k + 7d + 1 + (43k + 1 + 100Bk)
d∏
s

Ss

]
d∏
i

Ni

(11)

4.4. Matching Without Normalization

In certain applications, the target object is searched in
its original size without a scaling, or with scaling factors of
half sizes that correspond to downsampling by powers of 2,
i.e. half size, quarter size, etc. In such cases, further compu-
tational reduction is possible in both methods since no his-
togram normalization is needed for the same size matches.

For a scaling factor of 2−s, where s = 0 stand for no
scaling, s ≥ 1 for downsizing, the necessary computations
of the conventional approach with integer data becomes

(7d + 35k + 4)
d∏
j

Mj + 5(1 − δ(s))Bk

 d∏

i

Ni (12)

And the integral histogram performs in[
7d + 26k − 11 + (31k − 12 + 4Bk)

d∏
s

Ss

]
d∏
i

Ni

(13)
Note that, in addition to above costs, the conventional

approach has another important disadvantage. After each
computation, it needs the histogram array values to be de-
stroyed, which creates additional overhead.

5. Examples

5.1. 1D Case: Time Series

For an ordinary 1D data such as time series with a given
length M and a histogram with a total bin number B, a
target size range up to S points, the parameters of the above
analysis become d = 1 and k = 1. We obtain the ratio as

r1 =
(81M + 4B)S

95 + (19 + 4B)S
(14)

We present the computational ratio results for 1-D data in
Fig. 4 (1st row). The different graphs in the first column
represents the different target sizes plotted against the dif-
ferent number of bins in the histogram. The vertical axis
shows the amount of computational savings. As visible, the
integral histogram improves the processing time up to the
3.5×104 times over the conventional method. For instance,
a common task that requires searching a pattern which con-
tains 104 points using a 32-bins histogram can be employed
3,347 times faster than the conventional method.

5.2. 2D Case: Gray Level Images

For a M1×M2 gray level image and a search region size
range S1, S2, the parameters of the above analysis become
d = 2 and k = 1, and the ratio is

r2 =
[88M1M2 + 4B]S1S2

102 + (50 + 4B)S1S2
(15)

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

2-D data is very common in most vision problems from
gray-level surveillance video to mono-chrome aerial im-
agery. For instance, our problem may involve finding a
64 × 64 target pattern in 3 different resolutions using a 16-
bins histogram. The integral histogram method hunts for
these patterns 2, 435 times faster. In Fig. 4 (2nd row), we
give the comparison results, which show the integral his-
togram performs up to 6 × 104 times faster computations.

5.3. 2D Case with 3D Tensors: Color Images

For a color image with a 3D histogram (assuming each
point has 3 color values in a tensor form), the parameters
become d = 2 and k = 3. Assuming we are searching for a
template at S1, S2 scales, the ratio becomes

r3 =
[240M1M2 + 4B3]S1S2

300 + (81 + 4B3)S1S2
(16)

In Fig. 4 (3rd row), we present the computational savings
for a color image (2-D data, 3-D histograms) search. Even
for a regular model matching task that searches a 100×100
object model in 20 scales using histograms for each color
channel coded in 4-bits (16-bins), the process is accelerated
146 times. As shown in the graphs, the savings can go up to
7 × 105 depending on the number of bins and target size.

5.4. 3D Case: Volumetric Data

A volumetric data on the other hand have d = 3 and
k = 1. Searching in higher dimensional spaces is essential
in feature selection and classification problems. The corre-
sponding ratio is obtained as

r4 =
[95M1M2M3 + 4B]S1S2S3

109 + (81 + 4B)S1S2S3
. (17)

Integral histogram method becomes more advantageous in
higher dimensions as shown in Fig. 4 (4th row). The savings
can reach up to 15×107. For a 103×103×103 target volume
being searched in its original size (S = 1) using a 100-bins
histogram, we can achieve 1.6 × 108 times improvement.

5.5. Object Detection Results

Figures 5-6 show detection results of given patterns us-
ing histogram features. In the traffic sign detection example,
we search for the target object using a 215-bins color his-
togram. Although the conventional approach and integral
histogram give the very same similarity map, the integral
histogram method runs in 63msecs, however, the conven-
tional approach requires 2 minutes on a 3.2Ghz P4. The
integral histogram method is not limited to color and in-
tensity histograms. In texture detection example, as given
in Fig. 6, we use a 24-bins histogram of gradient orienta-
tion. To get the same results with the integral histogram

input target similarity

Figure 5. Object detection using a 215-bins color histogram. The
computed similarity map is same as the conventional approach;
however the integral histogram method runs in 63msecs although
the conventional exhaustive search takes approximately 2 minutes
for 100 scales on a 3.2Ghz P4.

Figure 6. Texture detection using a 24-bins gradient orientation
histogram. The integral histogram takes 88msecs, the conven-
tional method requires more than 5 minutes to get the same result.

that takes 88 msecs, the conventional method requires more
than 5 minutes of processing time. Note that, even such
a simple histogram provides sufficient information for tex-
ture segmentation, and it is possible to combine histogram
to define higher level features such as Haar wavelets, etc.

Note that, the integral histogram based search can be ac-
celerated further by using application specific constraints as
it is often employed for the conventional approach.

5.6. Tracking Examples

We simulated the integral histogram method to track ob-
jects between the consecutive video frames. After initializa-
tion of an object, we compute the color histogram similarity
scores between the original histogram and the histograms of
the object windows centered around every pixels. Note that,
such a similarity computation would be very slow using the
conventional approach. We compare our simple tracking
adaptation with a gradient descent based method known as
mean-shift [7]. Mean-shift evaluates the histogram similar-
ity (in most cases using Bhattacharya distance) only within

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

 M = 1000

 M = 2500

 M = 5000

 M = 7500

 M = 10000

Computational improvement 1−D Time Series

histogram bin size B

×
tim

es
 fa

st
er

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4

 B = 2

 B = 4

 B = 8

 B = 16

 B = 32

Computational improvement 1−D Time Series

Data size: M

×
tim

es
 fa

st
er

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7
x 10

4

 M = 10
 M = 50

 M = 100

 M = 150

 M = 200

Computational improvement 2−D Gray Level Image

histogram bin size B

×
tim

es
 fa

st
er

0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

4

 B = 2

 B = 4

 B = 8

 B = 16

 B = 32

Computational improvement 2−D Gray Level Image

Data size: M

×
tim

es
 fa

st
er

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8
x 10

5

 M = 128

 M = 256

 M = 386

 M = 512

Computational improvement 2−D Color Image

histogram bin size B

×
tim

es
 fa

st
er

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

 B = 4

 B = 8

 B = 16

Computational improvement 2−D Color Image

Image size: M

×
tim

es
 fa

st
er

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16
x 10

7

 M = 128

 M = 256

 M = 386

 M = 512

Computational improvement 3−D Volumetric Data

histogram bin size B

×
tim

es
 fa

st
er

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14
x 10

7

 B = 4

 B = 8

 B = 16

 B = 32

 B = 64

Computational improvement 3−D Volumetric Data

Image size: M

×
tim

es
 fa

st
er

Figure 4. Computational reduction in comparison to the conventional method. The integral histogram method is as many times as faster
than the existing approach for different type of problems explained in Section 5.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

t t + 1 t + 2

Mean-shift tracking results

Similarity scores using integral histogram

Histogram match tracking results

Figure 7. Object moves fast and there is no overlap between the
consecutive frames. Although mean-shift needs only 15msecs on
average, it may fail if the relocation of the object is large and there
is no overlap of boxes. Integral histogram method can find the
correct position in 5̃5msecs regardless of the overlap.

its original kernel, that is the window of the object. There-
fore, it is computationally feasible for real-time applica-
tions. For an object size shown in Fig. 7, the mean-shift
iterations using 16-bins histograms for each color channel
takes only 15 msecs on average depending the number of
iterations (on 3.2Ghz P4). However, mean-shift owns its
speed to the fact that it only evaluates the similarity within
a limited search region. As a result, for the cases in which
object relocation is large and there is no overlap between
the object windows in the consecutive frames, it is bounded
to fail as shown in the figures.

The integral histogram enables us to compute similar-
ities all over the image plane in a relatively constant small
amount of time (55msecs), thus we can track accurately fast
objects even in high frame sampling rates that cause signif-
icant relocation of the objects.

6. Discussion

We present a novel and computationally very fast method
to compute the histograms of all possible regions in a Carte-

sian space. The integral histogram provides not a sub-
optimal or a partial solution, but an optimum and complete
solution for the histogram based search problems.

Our experiments with different number of bins, data di-
mensions, and data structures confirm that the integral his-
togram method drastically decreases the amount of compu-
tations needed to obtain a multitude of histograms, thus, it
significantly improves the speed of search algorithms based
on histogram comparison.

In addition, the integral histogram enables construction
of advanced histogram features for further feature selection
and classification purposes. It can be extended easily to
higher dimensional data spaces and other tensor represen-
tations.

Several computer vision tasks such as video object de-
tection and tracking where the real-time requirement was
a bottleneck up to now will benefit from the integral his-
togram method.

References

[1] J. Huang, S. Kumar, M. Mitra, W.J. Zhu, and R. Zabih, “Im-
age indexing using color correlograms”, In Proceedings of
CVPR, 1997.

[2] C. Carson, M. Thomas, S. Belongie, J.M. Hellerstein, and J.
Malik, “Blobworld: A system for region-based image index-
ing and retrieval”, In Proceedings of ICVS, 1999.

[3] D. A. Forsyth and J. Ponce. “Computer Vision: A Modern
Approach”, Prentice Hall, 2002.

[4] C. Papageorgiou, M. Oren, and T. Poggio. A general frame-
work for object detection, In Proceedings of ICCV, 1998.

[5] S. Ruiz-Correa, L. G. Shapiro, and M. Meila, “A new
paradigm for recognizing 3-D object shapes from range data”,
In Proceedings of CVPR, 2003.

[6] P. Viola and M. Jones, “Robust real-time face detection”, In
Proceedings of ICCV, page II: 747, 2001.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time track-
ing of non-rigid objects using mean shift”, In Proceedings of
CVPR, 2000.

[8] S. Oualline, “Practical C++ programming”, O’Reilly & Asso-
ciates, ISBN: 1-56592-139-9, 1995.

[9] J. Mathew, P. Coddington and K. Hawick, “Analysis and de-
velopment of java grande benchmarks”, In Proceedings of
ACM, 1999.

[10] R. Bryant and D. O’Hallaron, “Computer systems: a pro-
grammer’s perspective”, Prentice Hall, ISBN 0-13-034074-1,
2003.

[11] Y. Moon, F. Luk, H.C. Ho, T.Y. Tang, K. Chan, C. Leung,
“Fixed-point arithmetic for mobile devices; a fingerprint ver-
ification case study”, In Proceedings of SPIE, 2002.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

